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Think of something very expensive, what comes to mind? Maybe you envisioned something like 
Ferrari or a yacht, but have you ever considered what the price that is required put a satellite into a space? 
According to Global.com, “It is estimated that a single satellite launch can range in cost from a low of 
about $50 million to a high of about $400 million.” Additionally, The Union of Concerned Scientists 
reports that there are around 1,459 active satellites orbiting earth as of 12/31/16. If every one of these 
active satellites costed the minimum price of a satellite, that comes out to just under $73 billion. Now 
while many of these satellites are both way below and way above this $50 million price tag, it’s easy to 
see the immense cost satellites carry. 

Therefore, my aim is to calculate, mathematically, the most ideal orbital altitude for a satellite 
over a 10 year period with respect to two factors. First, the amount of fuel (expense) it would require to 
launch the satellite into an orbit at that altitude. Second, the air resistance that would act against the 
satellite, which could possibly require more fuel be used to reaccelerate the satellite to the required orbital 
speed so that it can maintain its altitude. By “most ideal orbit,” I am simply trying to find the altitude at 
which the least amount of fuel is required to both get the satellite there and keep it at that altitude. 

I am involved with P.S.A.S (the “Portland State Aerospace Society”), in building and launching 
rockets and I have begun talking to some of my own classmates about beginning a rocketry club of our 
own. We are already beginning to create some computer models of the rockets we plan to build. These 
programs have spiked my interest in orbital physics and aided in my selection of this topic. 

To create my equation, I will need to create an equation that calculates that amount of fuel 
required, which for this paper will be defined as “​Y​,” based on the orbital altitude, which will be defined 
as “​X​.” To create this equation, I will need to be able to find a way to calculate the fuel required and the 
air resistance encountered based on the altitude and the altitude alone, otherwise there will be too many 
variables to solve and graph for. In other words, my final equation for calculating the most ideal orbit 
must have only two variables: orbital altitude (​X​) and weight of fuel required (​Y​). 

Now, because of the restraints of my abilities and my knowledge on orbital mechanics, I will be 
making a number of different assumptions. Because different spacecraft are affected differently by orbital 
and fluid mechanics, the spacecraft being examined in this IA must be defined. For both conventional and 
computational purposes, my calculations will be based around the Falcon 9 Full Thrust rocket, a rocket 
designed by SpaceX. This rocket has a dry mass of 26,200 kg (the first stage weighing 22,200 kg, and the 
second stage weighing 4,000​ ​kg) and its fairing has a nose cone that is 13 meters long and 5.2 meters in 
diameter, with a slant length of 14m. The specific impulse of the first stage is 282 seconds, and while this 
is the value at sea level, I am not expecting to use this stage in space. The specific impulse of the second 
stage is 348 seconds. Any spacecraft could be used in place of what I am using, it would just require a 
change in some of the constants in the equation. I will be assuming that this spacecraft will have perfectly 
circular orbits and that their total change in velocity is the final velocity they reach at their intended orbit. 
I will be measuring mass in kilograms, length in meters and time in seconds. I am only focusing on the 
behavior of the rocket in orbit, so the fuel and calculations for in atmosphere flying will not be included in 
my calculation. I will only include the speed at which the rocket is moving when it reaches orbit. For 
ascension, I am assuming mass for both stages (though in reality, the first stage is released part way 
through the ascension), and for everything that has to do with the rocket already in orbit, I will use the 
weight of just the second stage. I am assuming that the acceleration at the surface of the earth is 9.81m/s​2​. 
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Defining the Structure of My Internal Assessment: 
My aim is to calculate, mathematically, the most ideal orbital altitude for a satellite over a 10 year 

period. My final equation must acknowledge all the parts of a rocket’s flight to be able to calculate the 
altitude at which fuel consumption is the least. These parts include: 

1. The vertical ascent that carries the rocket to a certain altitude 
2. The circularization burn that puts the rocket in a circular orbit 
3. The burns that are required to counter the force of air resistance on the rocket 

These 3 parts will be the 3 big sections of my paper and will contribute to creating the final 
equation that will determine the most ideal altitude. I am planning to make my final equation look as such: 
Y = (fuel for ascent and circularization with respect to X)+(fuel for air resistance with respect to X) 

 
Calculating the Equation for Fuel Consumption at a Certain Altitude: 

This part of the equation has two parts within itself. I will find the velocity it takes to get the 
rocket to the altitude, and the the velocity it takes to then create a circular orbit. I will start with the 
velocity it takes to get the rocket into a circular orbit. To find the required velocity to create a circular 
orbit, I will be using the Tsiolkovsky rocket equation, which describes the motion of vehicles that follow 
the basic principle of a rocket. This equation allows me to obtain the weight of the fuel required (​m​f​) with 
respect to the change in velocity that is required to achieve a certain orbital altitude (​𝚫V​o​). The equation 
looks like this: 

 
Where: 
𝚫V​o​ = Total change in velocity (in other words, the final orbital velocity of the spacecraft). 
V​e​ = The effective exhaust velocity (meters per second or “m/s”) 
ln​ = natural log 
m​f​ = The mass of the rocket without propellant, also known as “dry mass” (kilograms, or more commonly 
notated as “kg”) 
m​o​ = The initial total mass of the rocket (in other words, ​m​f​ + the weight of the propellant) (kg) 

 
In this equation, I am trying to find the weight of the propellant with respect to the altitude. The 

variable ​m​f​ holds my propellant weight and ​𝚫V​o​ will be the variable for the change in velocity I need to 
reach to achieve a certain orbit (I will calculate this velocity using both altitude and orbital period). 
Therefore, the equation must be rearranged to fit this: 

𝚫V​o​/V​e​ = ln(m​o​/m​f​)  
e​(𝚫Vo/Ve)​ = m​o​/m​f 
m​o​ = m​f​ • ​e​(𝚫Vo/Ve) 

And because I know that ​m​o​ = ​m​f​ + ​Y ​(“​Y​” being the weight of the fuel on its own), I can further 
edit the equation to make: 

Y + m​f​ = m​f ​• ​e​(𝚫Vo/Ve) 
Y = m​f​ • ​e​(𝚫Vo/Ve)​ - m​f 
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I know that m​o​ = 4,000 kg from my assumptions, and this is because I am assuming that only the 
second stage of the Falcon 9 rocket will be trying to reach orbit. I also know the value of “e,” because e is 
Euler’s number, which has a value of 2.7182… and so on. I only need to figure out the values of ​V​e​ and 
𝚫V to complete this part of the equation. ​V​e​ is the effective exhaust velocity, and through some research, 
I found an equation to find this value on the wikipedia page for “Specific impulse.” The equation is: 

 
Where: 
V​e​ = The effective exhaust velocity (m/s) 
g​0​ =  acceleration due to gravity at the Earth's surface (m/s​2​) 
I​sp​ = The specific impulse, measured in seconds. 
 

It is a widely known fact that the acceleration at the earth’s surface is 9.81m/s​2​, and that is the 
value I need for ​g​0​. According to the wikipedia page on the Falcon 9 Full Thrust rocket, its combined 
specific impulse of both stages is 630 seconds. Inputting those values into my equation gets me: 

Ve = 9.81m/s​2​(630s) 
Ve = 6180.3 m/s  

Continuing on, ​𝚫V​o​ ​is the part of this equation that will contain my X value. Since “X” in this 
case is altitude, I need to create an equation for ​𝚫V​o​ ​with respect for “X” that I can replace ​𝚫V​o​ ​with 
within the larger equation. It should be mentioned that there is an equation that fits these requirements 
very well, however, in this case, I am going to use a more mathematical approach and use arc lengths to 
find the ​𝚫V​o​ for the rocket. Instead of using the whole 360° of what is a circular orbit which is just the 
circumference, I will stick with 45° and reduce my orbital period value by an eighth (because 45/360 is 
1/8) to fit the equation. Since my ​𝚫V​o​ is the velocity of my orbit, the equation for velocity will just be: 

𝚫V​o​ = meters/seconds = (The arc length of the orbit)/(The time it takes to travel that length) 
To find the arc-length of the orbit, I will use this equation from the IB Mathematics SL formula 

booklet: 
Arc length (m) = 𝜽 • (π/180) • r 

Where: 
𝜽 = My angle measure(​45°​) 
r​ = the total radius (which is the radius of the earth added to the altitude) 

 
Searching quickly on google, I found that the radius of the earth is 6,371,000 meters. Therefore, I 

can rewrite the arc length equations as: 
Arc length​ (m) = ​45 • (π/180) • (6,371,000m + X) 

Arc length​ (m) =​ (π/4) • (6,371,000m + X) 
To find time, I found the orbital period equation on the physics classroom website, which is: 

T = √[(4 • π​2​ • R​3​) / (G ​•  ​Mc)] 
Where: 
T ​= Orbital period (seconds) 
R ​= the radius of the orbit (meters, more commonly notated as “m”) 
G​ = the gravitational constant (6.673 x 10​-11​ N m​2​/kg​2​) 
Mc​ = The mass of the celestial body that the satellite is orbiting (kg)            ​3 

 



 

I already know that the radius of the orbit is 6,371,000 meters added to the altitude(​X​). Another 
quick search on google and I find that the mass of earth is 5.98 x 10​24​ kg. The gravitational constant is just 
that, a constant and its value is given above. I am going to put a ⅛ into the equation to compensate for the 
fact that I am not finding the whole orbital period, only 45° of it (which is an eighth of 360°). Now that I 
have all my constants and variables converted to values, I can rewrite my orbital period equation as: 

 
T = ⅛ ​• ​{√ 

 (4 • π​2​ • (6,371,000m + X)​3​)   
} 

(6.673 • 10​-11​ N m​2​/kg​2​) • (5.98 • 10​24​ kg) 

 

 
T = ⅛ ​• ​{√ 

 (4 • π​2​ • (6,371,000m + X)​3​)   
} 

(3.99 • 10​14 ​N m​2​/kg) 

Now that I have all the parts of ​𝚫V​o​, I can compile it. This is what the ​𝚫V​o​ ​ equation looks like:  

 
𝚫V​o​ = 

Arc Length  
= 

(π/4) • (6,371,000m + X)  

Orbital Period ⅛ ​• ​{√[(4 • π​2​ • (6,371,000m + X)​3​) / (3.99 • 10​14​)]} 

 

 
𝚫V​o​ = 

2 • π • (6,371,000m + X)   

√[(4 • π​2​ • (6,371,000m + X)​3​) / (3.99 • 10​14 ​N m​2​/kg)]  

And now that all my values for my original equation are defined, I can finish my original 
equation with those values: 

Y = m​f​ • ​e​(𝚫Vo/Ve)​ - m​f​ = (4000kg​ • ​e​(𝚫Vo/​6180.3 m/s​)​) - 4000 

Y =(4000kg​ • ​e​(𝚫Vo/​6180.3 m/s​)​) - 4000kg 

For now, I am going to leave ​𝚫V​o​ ​as it is because I don’t want to write out the full equation in 
that tiny area. This is the equation for finding the amount of fuel in kilograms needed to get the rocket 
into a circular orbit at a certain altitude, if I am just accounting for altitude.  

 
Calculating the Equation for Fuel Consumption to Reach a Specified Altitude 

To find the velocity it takes to bring the rocket to a specific orbit, considering that in this world, 
air resistance doesn’t make a difference, I found that I can use a kinematic equation to find the required 
velocity it takes to bring something to a specific altitude, this kinematic equation is: 

V​f​
2​ = V​i​

2​ + (2 • a • X) 
Where: 
V​f​ = Final velocity (which is the peak of the ascent, therefore this value is 0 m/s) (m/s) 
V​i​ = Initial velocity (basically my total velocity or 𝚫V​r ​, this is the speed the rocket must achieve to reach 
        the intended orbit) (m/s) 
a​ = acceleration due to gravity (-9.8m/s​2​) 
X​ = distance travelled (m)            ​4 

 



 

I am going to need to rearrange this equation so I can solve for ​Vi​ because ​Vi​ is the initial 
velocity, the velocity I begin with. If my final velocity is zero, and I’m slowing down, then ​Vi​ is the 
velocity I need to get to the height where my final velocity equals 0. It gives me the velocity I need in one 
place, instead of over a spread of time: 

V​i​ = √(V​f​
2​ - (2 • a • X)) 

Which, when some of the constants are replaced with values (and this is where I rename ​V​i​): 
𝚫V​r​ = √(0​2​ - (2 • -9.8 • X)) 

𝚫V​r​ = √(19.6 • X)) 
And I can now put this back into the Tsiolkovsky rocket equation, to get a total fuel mass for this: 

Y = m​f​ • ​e​(𝚫Vr/Ve)​ - m​f 

Y = 26200kg • e​(√(19.6 • X))/6180.3 m/s)​ - 26200kg 

This equation, and the equation before this, are the equations that help us find the required fuel 
for the rocket to achieve an altitude at a specific orbit. 

 
Calculating the Equation for Fuel Consumption with Respect to Air Resistance: 

To calculate air resistance, I will use this accepted equation: 

 
Where: 
F​a​ = The force of air resistance (Newtons) 
k​ = A constant that includes the traits of the atmosphere 
V​o​ = orbital velocity (m/s) 
p​ = The density of the air that the craft is moving through (kg/m​3​) 
C​D​ = The drag coefficient, a value that changes based on the shape and size of a craft 
A​ = Area of craft that is in contact with the air (m​2​) 

 
I know that the the velocity of the craft is equal to the equation figured out in the last section. To 

figure out the drag coefficient, I merely needed to know the shape of craft that was in contact with the 
atmosphere, which is the Falcon 9 payload fairing, a nose cone. According to the wikipedia page for this 
very topic, the drag coefficient of a cone is 0.5. To find “​A​,” I need to find the area of the cone that is in 
contact with the air, which can be found by using the cone surface area equation: 

A = πr​2​ + πrs 
Where: 
r ​= radius (m) 
S ​= slant length (m) 
 

And I can pull the different inputs for this equation from my assumptions: 
A = π​ • ​(2.6m)​2​ + π​ • ​(2.6m)​ • ​(14m) 

A = 43.16π  
Now the final variable I need to find is air density. This next section shows how to calculate that. 
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Calculating Air Density for the Equation: 

The next step in finding air resistance is calculating air density. To find air density, I first 
attempted to use a physics equation but it didn’t work. Then, I decided to use already known data to create 
a mathematical equation that would work just the same. I found some online data from The Engineering 
Toolbox that had multiple air density values for different altitudes. The data from that site looked like 
this:  

Elevation  
(m) 

Air Density  
(Kg/m​3​) 

 Elevation  
(m) 

Air Density  
(Kg/m​3​) 

 Elevation  
(m) 

Air Density  
(Kg/m​3​) 

0 1.225  10000 0.4135  40000 0.003996 

1000 1.112  15000 0.1948  50000 0.001027 

2000 1.007  20000 0.08891  60000 0.0003097 

3000 0.9093  25000 0.04008  70000 0.00008283 

5000 0.7364  30000 0.01841  80000 0.00001846 

 
Which, when graphed, looks like this: 

  
On this graph, the line of best fit (the orange line) is the equation that describes the equation of  

the graph with respect to elevation. In other words, that is the equation for the air density with respect to 
altitude(​X​). Therefore, my equation for air density is: 

P = 1.32 • ​e​(-0.000123​ • ​X) 
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Calculating the Equation for Fuel Consumption with Respect to Air Resistance Continued: 

Finding air density was the last thing I needed to do to get all my variables for the air resistance 
equation. Now, I can compile everything into a single expression. ​𝚫V​o​ ​would just be the value from the 
𝚫V​o​ equation from before. I’m using ​𝚫V​o​ in this calculation because this equation is talking about air 
resistance in orbit, and so I’m pulling the velocity equation for orbital velocity, air resistance during 
ascent is not being factored in here: 

F​a​= 
P • C​d​ • A • (𝚫V)​2  

= 
1.32 • e​(-0.000123 • X)​ • 0.5 • 43.16π • (𝚫V​o​)​

2 

2 2 

F​a​=​ ​14.2428π • e​(-0.000123 • X)​ • (𝚫V)​2 
To then incorporate this into my final equation, I need to convert this into another unit, one that I 

can derive a change of velocity from that I can then get a fuel mass from. I’ll start this process by 
incorporating my air resistance into the commonly used force equation: 

F = M • A 
Which can be rewritten as: 

 
A = 

F  
= 

Fa  
= 

14.2428π • e​(-0.000123 • X)​ • (𝚫V)​2 

M M M 

Where: 
A ​= Acceleration (m/s​2​) 
F ​= Total Force (Newtons) 
M​ = Mass (kg) 
Fa​ = Force from air resistance (Newtons) 
 

I can find the change in velocity by finding out the acceleration of the spacecraft over a set period 
of time. I am mapping the orbit of the spacecraft over 10 years, which is 315360000 seconds. Without a 
good knowledge of the rocket’s mass during this time, because the mass of the rocket would be the dry 
mass along with remaining fuel, which would be always changing. I’m going to replace “​M​” with the dry 
mass. The equation for ​𝚫V ​due to air resistance (which I will refer to as ​𝚫Va​)​ ​will be: 

𝚫Va = A • t 
Where: 
𝚫Va​ = Change in velocity due to air resistance (m/s) 
A​ = Acceleration (m/s​2​) 
t​ = Total change in time (s)   
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Replacing acceleration with my equation and time with 315360000 seconds (equivalent to 10 
years) and mass with 4000 kg, my final equation for change in velocity looks like this: 

 
𝚫Va = A • t = 

14.2428π • e​(-0.000123 • X)​ • (𝚫V)​2  
• 315360000s 

4000kg 

 

 
𝚫Va = 

4491609408π • e​(-0.000123 • X)​ • (𝚫V)​2  

4000kg  

And I can now reuse the Tsiolkovsky rocket equation to get a weight value of the fuel that will be 
needed to maintain the rocket’s orbit: 

 
Or, as simplified before: 

Y = m​f​ • e​
(𝚫Va/Ve)​ - m​f 

As given in my assumptions, the dry mass (​m​o​) of the second stage of the rocket is 4,000​ ​kg. To 
find ​V​e​, I just have to use the same equation as above, but my specific impulse will be much shorter, I 
stated that in my assumptions that the specific impulse of the second stage (the stage in space) is 348 
seconds. I am only using information for the second stage because this is the stage that will be orbiting 
around the earth at this point. I’m assuming that the first stage would have been ejected long before this. 
With this information, I can solve for ​V​e​: 

 
Where: 
V​e​ = The effective exhaust velocity (m/s) 
g​0​ =  acceleration due to gravity at the Earth's surface (m/s​2​) 
I​sp​ = The specific impulse (seconds) 

V​e​ = 9.81m/s​2​ x 348s 
V​e​ = 3413.88 m/s 

And then compiling everything into the Tsiolkovsky rocket equation gives me: 

Y = m​f​ • e​
(𝚫V/Ve)​ - m​f​ =  4000kg • e​(𝚫Va/3413.88m/s)​) - 4000kg 

 
The Final Equation: 

Now that I have each of the fuel weight equations to both get us to a certain altitude and keep us 
there, I can compile each of these equations together to make a final equation equation that will tell me 
what altitude would be most ideal to launch a satellite to that would require the least amount of fuel. This 
equation would be the sum of all three equations, since the total fuel would be the fuel that the rocket uses 
to achieve each of these different parts. The final equations would look like this: 
Y = [​(4000​ • ​e​(𝚫Vo/​6180.3​)​) - 4000] + [26200 • e​(√(19.6 • X))/6180.3)​ - 26200] + [4000​ • ​e​(𝚫Va/3413.88)​ - 4000] 
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Which can be further simplified to... 

Y = ​(4000​ • ​e​(𝚫Vo/​6180.3​)​) + (26200 • e​(√(19.6 • X))/6180.3)​) + (4000​ • ​e​(𝚫Va/3413.88)​) - 34200 

Where: 
Y ​= The total weight of fuel in Kilograms  
X ​= Altitude in meters 
e ​= Euler’s number 

 
𝚫V​o​ = 

2 • π • (6,371,000 + X)  

SQRT [(4 • π​2​ • (6,371,000 + X)​3​) / (3.99 • 10​14​)] 

and 

 
𝚫Va = 

4491609408π • e​(-0.000123 • X)​ • (𝚫V​o​
2​) 

4000kg 

When graphed, the equation makes a parabola that describes the relationship between the fuel 
mass and the altitude of orbit/air resistance. The line graphed looks like this: 

 
The lowest point on this graph tells me the altitude at which the lowest amount of fuel is required 

to maintain an orbit there for 10 years. The minimum point on the parabola is (214926,182788) and this 
tells me that the altitude at which the least amount of fuel is needed to maintain an orbit for 10 years with 
the Falcon 9 Full Thrust rocket is ​214,926 meters​. It may seem on the graph like this is the minimum 
value in relation to other points I found in excel but I did confirm that this was the absolute minimum on 
my Ti-84 graphing calculator. 
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Verifying my Final Answer Using Derivatives: 

Now that I have found a point on the graph, I can check my answer my finding the derivative at 
the minimum point to see if the slope there is zero. If it is, then that confirms that ​(214926,182788)​ is in 
fact the minimum of my graph. Due to the sheer size of my final equation, I won’t be solving it by hand. 
The derivative would look like this: 

dY [
 

Y = ​(4000​ • ​e​(𝚫Vo/​6180.3​)​) + (26200 • e​(√(19.6 • X))/6180.3)​) + (4000​ • ​e​(𝚫Va/3413.88)​) - 
34200 

] 
 
 
 
214926 

dX 

  
When evaluated using a calculator, I can confirm that the slope of my equation at 

(214926,182788)​ is zero, which confirms my answer that the altitude at which the minimum mass of fuel 
is needed to reach it is in fact ​214926​ meters. 

 
Final Reflection and Conclusion: 

What has this equation found for me? This equation has found a relationship between the altitude 
of an orbit and the time it is expected to fly to the mass of the propellant needed to get it there and keep it 
there. In making this equation, I have taken different equations from different areas of physics, with all 
different kinds of variables, and I have manipulated these equations to get the relationship between two 
and only two variables, by either cancelling out, or making them constants, which is what I needed to 
discover a relationship. I was able to do this by researching an abundance of physics equations in a 
numerous amount of topics, to find different equations that had specific variables that I needed. The 
Tsiolkovsky rocket equation gave me the ​M​o​ value, the value that contained the mass of fuel I needed. To 
get this value, I needed to know the ​𝚫V​ of the rocket, and from here the chain began of finding equations 
that finally made a link between ​M​o​ and the altitude (​X​) of the rocket. 

What can this information and equation do for us? what is a purpose for it in real life? Well, this 
equation is the basis for figuring out how to launch satellites into space more efficiently. My equation 
allows anyone who uses it, to be able to calculate the same thing I did, the most ideal altitude to launch 
something to, that requires the least amount of fuel. This equation can be changed to fit any spacecraft 
known to man, all it takes is changing some of the constants (​m​o​, m​f​, I​sp​, V​i​, C​d​, etc.​). This equation is 
also applicable to other celestial bodies too, since the equations within the final equation contain constants 
that are based on the body of influence (​g​o​, G, M​c​-​, etc.​). Equations like mine are paramount to rocket 
science and calculating where a rocket will end up and how. While my equation is somewhat crude in 
terms of how actual physics is supposed to work, it is a good example of the kind of math and science that 
rocket scientists use to try to figure out the behavior of a rocket in space.  

What are some things that I have learned and things that you can learn from this? I myself have a 
background in physics and math from classes and extracurriculars that I have been a part of but this is the 
first time that I have manipulated equations in such a large and extensive fashion. Before this, physics 
problems gave all the variables and constants except for one, maybe two of them. In this case, except for 
constants that have a universal value (​e, m​f​-​, g​o​, G, etc.)​, I had to solve for the variables myself, using a  
plethora of equations. Orbital mechanics is not something that my teachers and mentors knew much about  
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and so I had to teach myself many of the physics topics that I used in this paper. Another thing I learned 
as part of this internal assessment is how air density, air resistance, and the fuel required to reach an 
altitude, increase in relation to altitude. I had thought, before  
writing this essay, that the mass of fuel required to get to an altitude was directly proportionate to the 
increase in altitude, but I learned that the fuel required actually follows a more exponential curve, which 
was an interesting discovery for me. 

My own major difficulties in writing this mainly came from solving the equations. When I was 
first writing this paper, I rearranged the Tsiolkovsky rocket equation incorrectly, and so when I first tested 
different altitude values in the equation, I got very outlandish numbers, which set me back a couple days. 
I discovered my error shortly later, somewhat by chance, because I was reexamining the Tsiolkovsky 
rocket equation for a different part of the paper. Related to that, another difficulty I had was correctly 
solving and using the air resistance formula. The force of air resistance formula required another equation 
within itself, thereby making it very hard to solve right. Initially, I had difficulty confirming the validity 
of the equations I was making and the answers I was finding. I solved this by creating a google 
spreadsheet, placing a different equation from my internal assessment in each of the columns. This 
became crucial to my ability to progress in my paper and have realistic answers because I could look at all 
my data in a row and see the rate of change of different aspects of my rocket’s ascent at different 
altitudes. 
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